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produces uniform Ohmic dissipation and uniform surf;icc 
heat flux. The evidence is embodied in the excellent agree- 
ment between the measured temperature distributions along 
a vertically oriented, electrically heated foil and the analytical 
predictions for natural convection at a vertical plate with 
uniform surface heat flux. 

This finding stands in contrast to ref. [l], where an intrin- 
sically nonuniform heat flux was postulated to explain meas- 
ured temperature distributions that were independent of the 
orientation of the heated foil, the mode of heat transfer, and 
various other factors. In further contrast, supplementary 
experiments performed here [3] indicated that the surface 
temperature distributions were highly sensitive to whether 
the foil was oriented vertically or horizontally. Furthermore, 
local voltage measurements did not reveal nonuniformities 
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in the distribution of the electric current that appear to have 
existed in ref. [I]. 
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I. INTRODUCTION 

THE HEAT balance integral (HBI) method developed by 
Goodman [l] is a useful engineering tool which can give a 
quick estimate of parameters associated with a diffusion- 
driven phase change. Many extensions and refinements to 
Goodman’s method have been presented. Two important 
examples are : Hills [2], who developed the method for met- 
allurgical applications; and Bell [3], who coupled finite- 
element concepts with the Goodman technique to develop a 
method which can give very high accuracy. 

Goodman’s HBI method is based on the Stefan for- 
mulation of a one-dimensional phase change. This involves 
satisfying a heat balance condition at an isothermal phase- 
change boundary. In some ways this represents a drawback 
in that many practical problems have the phase change tak- 
ing place over a temperature range, e.g. the solidification of 
a binary alloy [4]. If this so-called ‘mushy’ region is significant 
then the Goodman HBI method may not be suitable. 
Recently Voller [4] has developed a heat balance integral 
method based on an enthalpy formulation for the analysis 
of a binary alloy. The aim of this paper is to generalise and 
investigate some aspects of this technique. In particular the 
performance of the enthalpy heat balance integral (EHBI) 
will be compared with previous HBI methods in the solution 
of: (i) a limiting case of a mushy region solidification ; and 
(ii) a one-dimensional, isothermal one-phase Stefan problem. 

2. BASIC PRINCIPLES-A MUSHY SOLUTION 

The basic principles of the EHBI can be outlined on con- 
sidering the following phase-change problem. Liquid initially 
at temperature T = E fills the positive half space x > 0, the 
liquid is such that it undergoes a liquid/solid phase change 
between temperatures T = E and T = -a with a loss of latent 
heat L. At time t = 0 the surface temperature at x = 0 is 
lowered to a temperature T = T, < --E in order that the 
phase change commences. The state of the system at time 
f > 0 is shown in Fig. 1. If the thermal properties are constant 
and heat conduction is taken as the only mechanism of heat 

transfer the following governing equations may be derived. 

(1) 

the enthalpy formulation. where 

r 

0 --E> T 

H/C= F(Q --E$T<E (2) 
!x T>E 

OL = L/C and F(7) is some function of temperature T which 
determines the nature of the phase change in the mushy 
region. Note that F(E) = 1 and F( - E) = 0. 

The basic HBI approach is to approximate the temperature 
profile in the intervals [0,X,] and [X,, X,] (see Fig. I) by the 
quadratic profiles 

(I, = T,,-;(T,+r:)+n,.x 
0 

iy, = _-C+*E2--XO) +o (x 
x,--x,, ’ 

=o MUSHY LIQUID 

0 X0 Xl 

FIG. 1. State of freezing system at time t and showing 
approximating profiles. 
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NOMENCLATURE 

c specific heat U, UO, U, temperature profiles 

E % relative error X, X,, X, position of phase-change isotherms 

F(T) latent heat change with temperature Z,, Z, non-dimensional space variables. 
H enthalpy 

k” 
conductivity Greek symbols 
partition ratio G( ratio of L/C 

L latent heat E width of mushy zone 
St Stefan number, -a/T,, K diffusivity, K/pC 

TO surface temperature I parameters for isotherm movement 

TF fusion temperature P density. 

TL liquidus temperature 

Note that these profiles satisfy the temperature conditions at 
x = 0, X, and X,. The values of a0 and al are found on 
setting 

dLJi, dU, 

dx dx 
at x=X, 

and 

ST0 at x=X, 
dx 

i.e. a continuity of flux condition. This gives 

2s 
ai =x, and a,= -7-A. (4) 

II 1 0 
In a similar manner to Goodman, as implemented by Bell 
[3], equation (1) may be integrated over the two regions 
[0,X,] and [X0, X,] to give, on substitution of the approxi- 
mating polynomials 

-(a+e)X, -&X0 = K[ ($lx, - (Zx.l t5) 
where 

x X-X, 
Z=X, and Z1=X,_X, 

On noting that U, is a function of Z, it follows that 

When the nature of the phase change in the mushy region is 
such that the relationship F(7), in equation (2), is known, 
equation (8) may be solved, for any given values of T,, and 
E, and explicit expressions for the isotherm movements and 
temperature obtained. 

Analysis methods for mushy region phase change have 
been proposed previously. Tien and Geiger [5] employ an 
analytical solution in the solid phase and a HBI technique 
in the mushy phase. In the discussion of this paper Goodman 
[6] proposes a complete analytical solution for a mushy 
region phase change. Both these techniques are limited, how- 
ever, in that the solid fraction temperature relationship is 
restricted to be of the form 

F= (l-Z,) (9) 

where as in the proposed method, equation (8) the form of 
F is completely general. Nevertheless, the methods of Tien 
and Geiger [5] and Goodman [6] provide a means of inves- 
tigating the applicability of equation (8). With the form of 
F given by equation (9), the value of A, in equation (8) 
becomes l/2. Predictions using the EHBI are compared with 
predictions from the Tien and Geiger HBI (TGHBI) and 
the analytical solution (TRUE) for various values of Stefan 
number (Sr = -a/T,) and mushy half range E in Table 1. 
From these results it may be observed that the proposed 
EHBI method performs well and produces results of a similar 
standard to those of the Tien and Geiger technique. As 
mentioned above, however, the proposed technique has a 
much greater flexibility in the choice for the form of F(T). 
For example, Voller [4] has used the EHBI with success, to 
investigate the solidification behavior of a binary alloy where 

A= J ‘W-W, 
0 

is constant with respect to time and equation (5) leads to 
Table 1. Comparison of methods and analytical solution 

1 
Values Method I0 Al 

E = 0.1 EHBI 1.0278 1.5508 Sr = 1.0 TGHBI 1.0058 1.5364 
TRUE 1.0069 1.5310 E = 

I 

0.5 EHBI 0.4251 2.1644 

-4E 1 (6) Sf = 1.0 =K x,-X, TGHBI TRUE 0.4297 0.4226 
2.1642 
2.1045 

two ODES in X,(r) and X,(I). On letting E = 0.25 EHBI 0.5400 1.2868 

(7) 
St = 2.5 TGHBI 0.5357 1.2851 

TRUE 0.5429 1.2470 
equation (6) gives a coupled non-linear system in parameters 
1 ^__I 1 E = 0.1 EHBI 0.5221 0.7622 

nj ill,” A() 

St = +!,,+s]-~=~+~ 1 0 II I,-& 5.0 TGHBI 0.5188 TRUE 0.5209 0.7519 0.7600 

E = 0.5 EHBI 0.2387 1.2007 

(21 -AJ+ 41, -&I A-(CI+E),+;A” =_-4E 
(8) St = 5.0 TGHBI 

J ” . . TRUE 
0.2388 1.2007 
0.2495 1.1144 
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Table 2. Comparison of cubic profile HBI methods 

St Analytical Goodman Cubic Quad 

1 1.24013 1.24106 1.23398 1.21299 
5 0.612848 0.613098 0.612667 0.61744 

10 0.440033 0.440082 0.439998 0.44177 
20 0.313642 0.313651 0.313636 0.314278 
50 0.199338 0.199339 0.199338 0.199503 

the F(T) relationship is given by the Scheil equation [7] 

where Tr is the fusion temperature of the pure material, T,_ 
is the liquidus temperature of the binary alloy and k is the 
partition constant. When Tien and Geiger [8] use the Scheil 
equation their technique requires that F is approximated by 
a polynomial in Z, of order 10. This introduces considerable 
extra complications and computations into the analysis. 

3. AN ISOTHERMAL, ONE-PHASE 
STEFAN PROBLEM 

A further check on equation (8) can be achieved on taking 
the limit as E --t 0, i.e. considering an isothermal temperature 
phase change. In the limit a + 0, s/(1, -&) + a1/8 and 
equation (8) reduces to the single quadratic 

A4+12’(24+4/St)-48/B = 0 (10) 

where i,, = 1, = 1. An alternative EHBI analysis using cubic 
temperature profiles in place of the quadratic profiles [see 
equation (3)] results in an almost identical equation, namely 

~4+~Z(24+6/St)-48/St. (11) 

Equation (IO) or (I 1) will predict the movement ofthe phase- 
change isotherm, X, for a one-phase Stefan problem from 

X(t) = &/ii. 
In this case there is also an analytical solution for 1, obtained 
on solving 

J&exp (1*/4) erf (1/2) = 2/St. (12) 

In addition Goodman [l] using a ‘standard’ HBI with a cubic 
profile derives the following cubic in 1* 

I”+3614+12(288+24/St)-576/St = 0. (13) 

Comparison between the analytical solution, equation (12) 
and predictions of equations (10) [quad], (11) [cubic], and 
(13) [Goodman] is made in Table 2. These results indicate 
that 

-the cubic EHBI gives more accurate results than the quad- 
ratic (note this does not mean to say that an increase in 
the order of the polynomial will always lead to improved 
accuracy) ; 

-the accuracy of the cubic EHBI equation (1 I), is slightly 
better than that of the cubic Goodman HBI equation (13) 
note also that equation (11) (a quadratic) is easier to solve 
than equation (13) (a cubic) ; 

-the cubic EHBI underpredicts whereas the cubic Good- 
man HBI overpredicts. 

A possible reason for the difference between the Goodman 
HBI and the EHBI is in the boundary conditions used. In 
the Goodman HBI forcing the temperature profiles to satisfy 
the Stefan condition 

4 ..dX 

which expresses the heat balance at the phase-change 
isotherm, is a fundamental step. Whereas in the EHBI 
methods this condition is not explicitly involved. However 
an analysis of the EHBI shows that as E -+ 0 the Stefan 
condition is satis$ed by the resulting profiles. For example, 
consider the EHBI quadratic profile, equation (3). In the 
limit a + 0 the solid profile becomes 

uo = T,-;T,+a,r 1-z ( > 0 

where a, = - T,/X-C&/~JIC~ which on substitution will 
satisfy the Stefan conditions, equation (14). Clearly more 
analysis is required to determine why the Goodman IIBI and 
EHBI cubic methods differ. 

4. CONCLUSIONS 

HBI methods have proved to be a popular means of 
obtaining quick and accurate estimates of phase-change par- 
ameters. A practical drawback of such an approach is that 
only isothermal phase-change problems or problems with a 
restricted form of mushy region can be dealt with. In this 
paper an alternative HBI method was developed based on 
the enthalpy formulation of phase change. This method can 
deal with problems in which the phase change occurs over a 
temperature range, E, the latent heat evolved expressed as a 
function of temperature F(T). Furthermore : 

-There is no restriction on the form of the F(r) relationship. 
-As far as isothermal phase changes are concerned (i.e. in 

the limit E + 0) predictions of the EHBI were in general 
more accurate than previous HBI techniques. In addition 
the form of the resulting equations were of a simpler form 
(i.e. quadratics as opposed to cubits). 

-Analysis of the temperature profiles derived from the 
EHBI show that the profiles satisfy the Stefan heat balance 
of an isothermal phase change regardless of the fact that 
in the derivation of the profile no heat balance conditions 
were explicitly satisfied. 

The EHBI approach outlined in this paper should prove 
useful in extending the range of problems to which HBI 
techniques can be applied. In fact, as previously mentioned, 
the technique has been successfully modified and applied to 
a problem of undirectional solidification of a binary alloy 
[41. 

1. 

2. 
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1. INTRODUCTION 

A DETAILED analysis of the dynamics and transport 
mechanisms of interacting drops is important for the basic 
understanding of (dense) spray processes and for a variety 
of absorption, drying, cooling and combustion systems. In 
dense sprays, drops are so closely spaced that they interact 
with each other and thereby modify the local ambient con- 
ditions including drop dynamics, fluid properties and heat/ 
mass transfer rates. Of particular interest here are the 
momentum and mass transfer with chemical reaction of acce- 
lerating and interacting drops on a one-dimensional tra- 
jectory at moderate to high Reynolds numbers, i.e. the range 
of 50 < Re < 400. The lower limit allows the use of boun- 
dary-layer type postulates and the upper bound is given by 
the sphericity assumption of liquid drops. 

Recent reviews of theoretical and experimental modeling 
results for predominantly combustion sprays have been con- 
tributed by Sirignano [1], Faeth [2], Law [3] and Bracco [4]. 
For example, Tal and Sirignano [S] and Tal et al. [6] discussed 
the fluid mechanics and heat transfer for sphere arrays using 
their cylindrical cell model which is an improvement over the 
classical spherical cell model due to Happel [7]. The drop 
spacing is given by the ‘voidage’ of the sphere assemblage 
where each sphere is in a fixed position surrounded by a 
rectangular cell. Since the voidage is directly related to the 
inter-drop distance, the lumped parameter effects of different 
geometric array parameters can be evaluated. However, the 
interaction dynamics of several individual drops and hence 
distributed parameter effects cannot be calculated. Bracco [4] 
reviewed mathematical models and supportive experimental 
data for engine sprays considering droplet break up, dense 
spray and dilute spray regions. Bracco and co-workers used 
the discrete droplet model (DDM) with appropriate prob- 
ability density functions to study for dense sprays the effect 
of void fraction on interphase transport rates (which was 
found to be weak) and the effect of drop collisions on drop 
size increase (which was found to be significant). These 
modeling approaches result in average system parameters, 
i.e. no details of the velocity/pressure and concentration 
fields around or within individual, interacting drops can be 
extracted. On the other hand, statistical models are com- 
putationally very cost-effective in estimating integral prop- 
erties of entire spray regions. 

7 To whom all correspondence should be addressed. 
$ Department of Chemical and Environmental Engi- 

neering, RPI, Troy, NY, U.S.A. 

In this paper we concentrate on several spherical mono- 
dispersed drops which interact while falling through a pol- 
luted environment. The work is based on a series of pre- 
viously published papers [g-lo] which concentrated on 
absorption of a trace gas (e.g. sulfur dioxide) by gravity 
sprays. 

2. MATHEMATICAL FORMULATION 

A mathematical model is developed to simulate the mass 
transfer characteristics of a multidrop system, falling ver- 
tically on a one-dimensional trajectory. Based on a previous 
analysis [I 11, five drops are being considered to calculate the 
drop dynamics, followed by a three-drop analysis of mass 
transfer, i.e. trace gas absorption with liquid phase chemical 
reaction. 

2.1. Drop dynamics 
The following analysis is based on the assumptions that: 

(a) monosized drops are released with the same initial 
velocity at a regular time interval, i.e. at constant frequency ; 
possible drop coalescence is presently not considered ; 

(b) the acceleration/deceleration phase of the first three 
drops is of major interest ; 

(c) a drop inbetween neighboring drops will experience 
both a ‘front sphere effect’ and a ‘back sphere effect’ as has 
been experimentally observed [15, 161; the average of these 
effects is experienced by the center drop ; 

(d) in focusing basically on the first three drops, the devel- 
opment of the air entrainment corridor [S] is not treated 
separately but included in a modified approach velocity and 
the wake velocity field for mass transfer. 

The governing equation for the motion of the ith drop is 
Newton’s second law which can be written as 

At any time, the dimensionless drop distance can be cal- 
culated from 

d ,J+, =(x,-x,+,)/a; j= l,..., 4 (2) 

where 
dx,ldt = v, (3) 

Based on the semi-empirical expressions given by Rowe and 
Henwood [ 121. the following equations are proposed for the 


